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A new analytical edge spread function fitting model for
modulation transfer function measurement
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We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer
function (MTF). The ESF data obtained from a slanted-edge image are fitted to our model through the
non-linear least squares (NLLSQ) method. The differentiation of the ESF yields the line spread function
(LSF), the Fourier transform of which gives the profile of two-dimensional MTF. Compared with the
previous methods, the MTF estimate determined by our method conforms more closely to the reference. A
practical application of our MTF measurement in degraded image restoration also validates the accuracy
of our model.
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Modulation transfer function (MTF) has been widely
used to characterize the spatial frequency response of a
linear and space-invariant imaging system. A straightfor-
ward approach to measuring the MTF involves imaging
a known input, such as a point or a line source, to pro-
duce the point spread function (PSF) and the line spread
function (LSF), respectively[1,2]. However, the use of a
point or a line source requires precise fabrication and
high exposure. Thus, an edge source is imaged to yield
the edge spread function (ESF) instead, which can then
be differentiated to obtain LSF[3−12].

ESF measurement can be done in a number of ways
and is the subject of this letter. Bentzen[13] has fitted a
model such as the error function to the ESF data, which
can be differentiated analytically to produce a Gaussian-
shaped LSF. Yin et al.[14] have fitted the LSF data to
a model that is given by the sum of a Gaussian (for the
central part) and an exponential (for the tail part) func-
tions. Boone et al.[15] have extended the technique of
Yin et al. in order for the model to be used to measure
the ESF as well. Tzannes et al.[16] have used the sum
of Fermi functions to achieve the desired fit to the ESF
data. All of these models are based on the fact that they
have similar shapes with a typical ESF, which implies
that they lack in analytical derivation.

In this letter, we propose a new analytical ESF fitting
model to measure MTF. Unlike the previous models, our
proposed model is derived from the scalar diffraction
theory. By fitting the ESF data to analytical expression,
the LSF and MTF can be easily calculated from the ESF
fitting coefficients.

When the object illumination is incoherent, the image
intensity distribution is calculated as[17]

Ii(x) =
∫ ∞

−∞
Io(ξ)a2 sin c2

[
πa(x + mξ)
(1 + m)λf

]
dξ, (1)

where Io(ξ) is the intensity distribution transmitted by
the object; a is the diameter of the aperture; m is the
magnification of the system; λ is the mean wavelength of
the light source; f is the focal length of the system.

Thus, the intensity image of a step object (edge along

the y axis) is given by

ESF(x, k) =
π

2
+ Si(Akx) +

cos(Akx) − 1
Akx

, (2)

where A = a
(1+m)f is a constant; k = 2π

λ is the wave
number; Si(x) =

∫ x

0
sin t

t dt is the sine integral function.
In the case of polychromatic irradiation, the effective

ESF is obtained[18]

ESF(x) =
∫

S(λ)D(λ)ESF(x, λ)dλ, (3)

where S(λ) is the spectral energy of the incident radia-
tion and D(λ) is the photocathode sensitivity.

For simplicity, we suppose that the imaging system has
a constant spectral energy and photocathode sensitivity.
Thus, substituting Eq. (2) in Eq. (3), we derive

ESF(x) =
∫ λ1

λ2

ESF(x, λ)dλ =
∫ k1

k2

ESF(x, k)
(
− 2π

k2

)
dk

= (−2π)

[
−π

2k
+

AxCi(Akx)
2

− sin(Akx)
2k

− Si(Akx)
k

+
1 − cos(Akx)

2Ak2x

]∣∣∣∣∣
k1

k2

, (4)

where k1 = 2π
λ1

= 2π
780 and k2 = 2π

λ2
= 2π

380 correspond
to the upper and lower limits of the visible spectrum
(380−780 nm), respectively.

As most ESFs are not well behaved and symmetric
about the midpoint of the edge, a summation of three
ESF functions is used to achieve the desired fit. Thus,
the resulting ESF fitting model is given by

E(x) = d +
3∑

i=1

aiESF
(x − bi

ci

)
, (5)

where d, ai, bi, and ci are constants.
The ESF data obtained from the slanted-edge im-

age are fitted by means of the non-linear least squares
(NLLSQ) method.
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The next step is to differentiate the ESF to arrive at
the LSF. Substituting Eq. (4) in Eq. (5), we get

L(x) =
dE(x)

dx
=

3∑
i=1

ai

dESF(x−bi

ci
)

dx−bi

ci

·
dx−bi

ci

dx

= (−2π)
3∑

i=1

ai

ci

[
ACi(Akx)

2
− sin(Akx)

2kx
− 1

2Ak2x2

+
cos(Akx)
2Ak2x2

]∣∣∣∣∣
k1

k2,x=
x−bi

ci

, (6)

where Ci(x) = −
∫ ∞

x
cos t

t dt is the cosine integral func-
tion.

The one-dimensional (1D) discrete Fourier transform,
(DFT) of the LSF is the profile through the center of the
two-dimensional (2D) optical transfer function (OTF).
The normalized modulus of the OTF is the MTF.

To compare our model with three previous models pro-
posed by Bentzen, Yin et al., and Tzannes et al., we
have designed and fabricated a doublet objective. The
focal length is 387.7 mm and the F number is 15. Both
the ESF and MTF can be obtained directly from Zemax,
which can be used as a reference to evaluate the perfor-
mance of different models.

Figure 1(a) shows the fitting results to the designed
ESF by different models. None of the estimates is quite
different from the others, indicating that all the four
fitting models have similar performances. The details
of the top portion of the fitting results are plotted in
Fig. 1(b). It can be noted that Bentzen’s fitting result
deviates from the reference more than the other models.
Figure 1(c) shows the resulting MTFs derived from the
ESFs in Fig. 1(a). To distinguish the fine differences
among all of these models, we compute the errors be-
tween the estimates and the reference, which are plotted
in Fig. 1(d). All of the errors lie between −0.025 and
0.02, and fluctuate according to the frequency.

Similarly, we compare our model with the slanted-edge
method proposed by ISO 12233[19]. The designed PSF

Fig. 1. (a) ESF fitting results by different models; (b) details
of the top portion; (c) resulting MTF estimates; (d) errors
between the estimates and the reference.

Fig. 2. (a) Comparison of the ISO estimate with the reference
and (b) errors between the estimate and the reference.

Table 1. Max, Mean, and RMS Errors between the
MTF Estimates and the Reference in the Absence of

Noise

Method Max Error Mean Error RMS Error

Bentzen[13] 0.0240 0.0098 0.0121

Yin et al.[14] 0.0141 0.0073 0.0085

Tzannes et al.[16] 0.0189 0.0077 0.0097

ISO 0.0123 0.0067 0.0076

Proposed 0.0105 0.0042 0.0052

is used to blur a perfect slanted-edge image. Applying
the ISO method to the resulting degraded image, we ar-
rive at an estimate of the MTF. Figure 2(a) shows the
comparison of the ISO estimate with the MTF reference.
The errors between the measured and designed values are
plotted in Fig. 2(b). The ISO estimate is a little higher
than the reference at almost all frequencies.

In Table 1, the errors in various methods are compared
through the maximum, mean, and root mean square
(RMS) errors. Among all the models, the estimate de-
termined by Bentzen’s model exhibits the largest error
while that based on our model shows the lowest error.
In the absence of noise, the estimate based on our model
conforms more closely to the reference than that deter-
mined by the ISO method.

Noise deteriorates the imaging performance of an image
sensor. Based on the central limit theorem, noise in digi-
tal images can be represented by Gaussian noise. Signal-
to-noise ratio (SNR) is a measure used to quantify how
much an image has been corrupted by noise. The SNR
of a noisy slanted-edge image is defined in decibels[8,9]:

SNR = 20 log
2(Db − Dd)

σb + σd
, (7)

where Db and Dd are the means of the bright and dark
sides, respectively; σb and σd are the standard deviations
of the bright and dark sides, respectively.

To evaluate the performance of our model in the pres-
ence of noise, Gaussian noise is added to a slanted-edge
image. Figure 3(a) shows the MTF estimates obtained
from the resulting noisy image with an SNR of 30 dB.
It is noted that the ISO estimate fluctuates significantly
over such frequency. The corresponding errors between
the MTF estimates and the reference are shown in Table
2. In this case, the estimates based on our model main-
tain the lowest errors.

The MTF estimates under different levels of Gaussian
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Fig. 3. (a) Performance evaluation under Gaussian noise
(SNR = 30 dB) and (b) MTF estimates based on our model
under different levels of Gaussian noise (SNR = 25 and 20
dB).

Table 2. Max, Mean, and RMS Errors between the
MTF Estimates and the Reference under Different

Levels of Gaussian Noise

Method SNR Max Mean RMS

(dB) Error Error Error

Bentzen[13]
30 0.0696 0.0315 0.0345

20 0.1773 0.0831 0.0910

Yin et al.[14]
30 0.0446 0.0194 0.0210

20 0.1063 0.0409 0.0461

Tzannes et al.[16]
30 0.0578 0.0219 0.0245

20 0.1374 0.0499 0.0558

ISO
30 0.0683 0.0193 0.0243

20 0.2535 0.0836 0.0925

Proposed

30 0.0195 0.0114 0.0124

25 0.0315 0.0140 0.0171

20 0.0509 0.0218 0.0266

noise (SNR = 25 and 20 dB) based on our model are
computed, and a comparison of the estimates with the
reference is plotted in Fig. 3(b). As the noise increases,
the estimate gradually deviates from the reference within
the whole band of frequencies. As shown in Table 2, the
resulting errors between the estimates and the reference
increase with a decreasing SNR.

When SNR drops to 20 dB, as shown in Table 2, the
MTF estimates in the various methods deviate much
more from each other than before.

According to the abovementioned discussions, noise
plays an important role in MTF measurement. In gen-
eral, the more noise is added to the image, the more
errors will be obtained from the calculation. Particu-
larly, the measurement based on the ISO method is more
sensitive to noise, which would contribute to a decrease
at middle frequencies and an increase at high frequen-
cies. In contrast, the MTF estimate based on our model
is less affected by noise, implying that our model can
work with a lower SNR. However, as noise increases,
the MTF estimate based on our model finally inevitably
fails.

Table 3 shows the time spent on the MTF calculation
in various methods under different levels of Gaussian
noise (SNR = ∞, 40, and 30 dB). As noise increases, the
time increases as well. The time consumed by our model
is much longer than the other models due to the model
complexity. The time spent by the ISO method almost

Table 3. Time Spent on MTF Calculation in Various
Methods under Different Levels of Gaussian Noise

Method
Time (s)

SNR = ∞ SNR = 40 dB SNR = 30 dB

Bentzen[13] 0.422 0.453 3.188

Yin et al.[14] 0.250 0.271 2.234

Tzannes et al.[16] 0.063 0.078 4.000

ISO 0.982 0.985 1.047

Proposed 76.656 88.094 107.344

Fig. 4. (a) Resolution chart image; (b) ESF fitting results
in both vertical and horizontal directions; (c) resulting MTF
estimates; (d) resulting 2D PSF; (e) restoration result.

remains the same because it does not involve the fitting
step.

Therefore, we need to choose between the fitting pre-
cision and running time. In the case of common MTF
measurements, our model can provide a more accurate
estimate; however, in the situation of quick real-time
MTF measurements, the other methods can save much
more time. Hence, the selection depends on the situa-
tion.

Our model has been used to estimate the MTF of a
practical imaging system, which is composed of a charge-
coupled device (CCD) camera with a sampling interval
of 3.46 µm, and a doublet objective with a focal length
of 387 mm. Figure 4(a) shows the resolution chart im-
age acquired from the CCD camera. The fitting results
to the ESF data in both vertical and horizontal direc-
tions are shown in Fig. 4(b). Figure 4(c) illustrates
the calculated MTFs in both the vertical and horizon-
tal directions. Both estimates are similar, except at some
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Fig. 5. (a) Remote image; (b) ESF fitting results in both ver-
tical and horizontal directions; (c) resulting MTF estimates;
(d) resulting 2D PSF; (e) restoration result.

Table 4. Objective Quality Assessment for
Resolution Chart and Remote Images

Metrics
Resolution Chart Image Remote Image

Degraded Restored Degraded Restored

GMG 0.0183 0.0272 0.0202 0.0709

LS 0.0570 0.1066 0.0892 0.3285

high frequencies, indicating that the 2D OTF is nearly
symmetric. 1D OTFs in both vertical and horizontal
directions correspond to the Fourier transform of LSF
(x) and LSF (y), respectively, which are combined as a
vector product to create a 2D PSF[5,9]

PSF(x, y) = LSF(x) ⊗ LSF(y). (8)

Figure 4(d) shows the resulting 2D PSF, which can
be used to reconstruct the deteriorated images. Figure
4(e) shows the restoration result of the blurred resolution
chart image. It is noted that details at high spatial fre-
quencies can be seen more clearly. Meanwhile, the noise
in the background has also been unavoidably amplified.

Similar to the resolution chart image, our method has
been utilized to measure the MTF of a remote image
shown in Fig. 5(a). The same deconvolution procedure
has been performed, and Fig. 5(e) shows the correspond-
ing restoration result. It is apparent that nest structures
barely visible in the raw image can be identified more
easily in the restored image.

Gray mean gradients (GMGs) and Laplacian summa-
tion (LS) are two of the most common no-reference objec-
tive image quality metrics[20]. A larger GMG or LS value
means better image quality. In Table 4, both the resolu-

tion chart and remote images are assessed by the above-
mentioned measures. Both GMG and LS values increase
after deconvolution, indicating that the image quality has
been improved. The restoration result not only validates
the MTF estimate calculated by our method but also
demonstrates a practical application for our MTF mea-
surement.

In conclusion, we propose a novel analytical fitting
model for MTF measurement. Compared with the pre-
vious methods, the MTF estimates based on our method
show the lowest error with respect to the reference, which
are then used to restore degraded images via deconvolu-
tion. The results validate the accuracy of our model. Fu-
ture research may focus on how to improve our algorithm
to suit real-time MTF measurement and compensation.
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